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What can be alternating?

There exists a choice of crossing information for any knot or link
projection to be alternating.



What can be alternating?

There exists a choice of crossing information for any knot or link
projection to be alternating.



What can be alternating?

There exists a choice of crossing information for any knot or link
projection to be alternating.



What can be alternating?

There exists a choice of crossing information for any knot or link
projection to be alternating.

# N
’
’ ~ S
\\ 1 - /\

! 1
+ I

v 7

\ ’



A lot of small links are alternating
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Results about alternating diagrams

Theorem (Menasco, 1984): Given an alternating diagram D of
alink L, Lis split if and only if D is split.
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Set up for proof
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Set up for proof

Standard Position for a surface F:
@ FnN B, and Fn B_ are each a disjoint union of discs
@ No component of FN S, or F N S_ meets any bubble in
more than one arc.
@ Each component of FN' S, and F N S_ goes through a
crossing region.



Proof Sketch

Let L be a split link with an alternating diagram D. Assume by
way of contradiction that D is not a split diagram.
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Proof Sketch

Let L be a split link with an alternating diagram D. Assume by
way of contradiction that D is not a split diagram. There is a
sphere F splitting L.

Lemma (without proof, sorry): We may put F in standard
position with respect to D.



Proof Sketch

Now we have F in standard position with respect to D.
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Let C be an innermost component of F N S;. Since F is in
standard position, C goes through a crossing region.



Proof Sketch

Now we have F in standard position with respect to D.
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Let C be an innermost component of F N S;. Since Fis in
standard position, C goes through a crossing region.

Notice from the checkerboard coloring that C goes through an
even number of crossing regions.



Proof Sketch

Since D is alternating, when C goes through a second crossing
region, there will be a component of F N S, on the other side of
C.
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Since D is alternating, when C goes through a second crossing
region, there will be a component of F N S, on the other side of
C.
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Proof Sketch

Since D is alternating, when C goes through a second crossing

region, there will be a component of F 1 S, on the other side of
C.
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Therefore, C is not innermost. =«



Short Detour: Prime Knots

Theorem (Schubert, 1949): Every oriented knot can be
uniquely expressed as the connect sum of prime knots
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Theorem (Schubert, 1949): Every oriented knot can be
uniquely expressed as the connect sum of prime knots



Results about alternating diagrams
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Theorem (Menasco, 1984): Given an alternating diagram D of
aknot K, K is prime if and only if D is prime.
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Results about alternating diagrams

Tait Conjectures

@ Theorem (Kauffman, Murasugi, Thistlethwaite, 1987): Any
reduced diagram of an alternating link has the fewest
possible crossings.

@ Theorem (Kauffman, Thistlethwaite, 1987): An amphichiral
(or achiral) alternating link has zero writhe.

@ Theorem (Thistlethwaite, Menasco, 1991): Given any two
reduced alternating diagrams D; and D of an oriented,
prime alternating link: Dy may be transformed to D, by
means of a sequence of moves called flypes.



Results about alternating diagrams

Theorem (Crowell, Murasugi, 1958): Applying the Seifert
algorithm to an alternating diagram results in a Seifert surface
of minimal genus.
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Theorem (Crowell, Murasugi, 1958): Applying the Seifert
algorithm to an alternating diagram results in a Seifert surface
of minimal genus.

Theorem (Kauffman, Murasugi, Thistlethwaite, 1987): Every
minimal crossing diagram of a prime alternating link is
alternating.



A non-alternating diagram of an alternating knot with minimal
crossings.

a3 Y

Proof that the Whitehead link is not split.
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Prime Decomposition of Alternating Knots

A knot is alternating if and only if its prime decomposition is of
alternating prime knots.
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Prime Decomposition of Alternating Knots

A knot is alternating if and only if its prime decomposition is of
alternating prime knots.
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Prime Decomposition of Alternating Knots

A knot is alternating if and only if its prime decomposition is of
alternating prime knots.




